4§

Migrating to Linux for Device Software
Part | - Why Make the Move?

Bill Weinberg
Wind River Seminars — Sunnyvale, Alameda, Seattle
August 2005

Agenda - Part |
Migrating to Linux for Device Software

Device Software Landscape

Migration Rationale
— Business Drivers
— Technical Benefits

Getting Started

Migrating to Linux for Device Software 2

(>

Target OSes for 32/64-bit Applications

Linux

25% '

VxWorks

12%'

Windows XPE

a%'

Windows CE

Windows CE.NET

Windows NTE

uCosS

Neutrino

Nucleus

Developers surveyed by VDC
indicate that Linux is the top
OS for their projects

29% of developers survey that
Linux will be the embedded
OS in their “next” project

Other

17%'

Proprietary OS

8%'

No formal 0S

8%'

1

I
0% 5%

Migrating to Linux for Device Software

T
10%

{
15%

T I
20% 25%

(>

-4

A Linux Application Space

for Device Software

Communications Infrastructure

— Switches, routers, base stations, access points, hot spots, media gateways,
SLAM, firewalls . ..

— Wireless and wire-line
Consumer Electronics

— Handheld devices — cell phones, PDAs, media players, cameras

— Automotive — in-car entertainment, navigation, satellite radio

— Home entertainment — TV, HDTV, DVR/PVR, home gateways, home control
Instrumentation and Control

— Medical devices, industrial monitoring, manufacturing control, test equipment §_
Aerospace and Defense

— Secure networking, command and control, launch systems, simulation
Office and Retail Automation

— Printers, faxes., scanners, MFDs, voice malil, voice conferencing, POS,
transaction terminals, thin clients

Almost every other type of embedded design!

(s

Linux for Device Software - Segmentation

Industrial Automation,
1%

~.__ Aerospace & Defense, 8%
/- Office Automation, 4%
| Automotive, 3%

~— Medical, 3%

~ Building/Home
* Automation, 1%

Retail Automation, 1%

Telecom / Datacom, 30%

Others, 4%

Consumer Electronics,
Source: VDC 2005 35% Linux Pundlt

H H H . Op 0 ion An [
Migrating to Linux for Device Software 5 B ’“n*: Py Ef; - ’:

INSU t J"'_:é I

Where Linux Isn’t in Embedded (Today)

Applications Needing Certification
— Aerospace, medical

Software-based Real-time I
— Traditional industrial control
— Network data plane
— Software intensive signal processing

Size- and Resource-sensitive Applications

— 8, 16, and 32-bit SoCs and and MMU-less
applications

— Small memory footprint (<256KB)

(>

Migrating to Linux for Device Software 6

Migration Motivators - Many and Varied

Lower Total Costs

Higher Reliability

Vendor Independence / Self-determination
“Gold Standard” Networking

Broad CPU Support

Tools Availability

Enterprise Features make Embedded
Mainstream

Migrating to Linux for Device Software 7

(>

Linux for Device S/W - Adoption Factors

Royalty Free 65% |

Source Code 62%

Communications 1%

Reliability 28%

CPU Support 28%

Cost Reduction 23%

Community Support 16%

Community Size 1%

Vendor Independence m
Quality L 10%
Other [|3%
' | r/ I [| I/ I/ I

0% 10% 20% 30% 40% S50% 60% 70%

Source: VDC 2005 l_-_inu __ PundltA

Migrating to Linux for Device Software 8 '

Source

usin

RTOS Developers - Reasons for Migration

Development Options 28%

Reduced Deployment Costs 21%

RTOS End-of-Life 19%

Availability of Drivers/Tools 10%

Access to Source Code 9%

Familiar APIs & Prog. 6%
Model

Other 8%

."
r
-

0% 5% 10% 15% 20% 25% 30%

Source: LinuxPundit On-line Poll Linux Pl.l ndit

ource Opir J-“ alysis

Migrating to Linux for Device Software 9 af :.,H & Technical Consulting 1§

Intelligent Device OEMs: Why They Look to Linux

Platform consolidation
— Strategic hardware and software platform

Reduced bill of material costs
Native platform for value-added services
Synergy with deployment infrastructure

Migrating to Linux for Device Software 10

(>

Platform Consolidation

Historically, device OEMs support diverse, multi-tier
product platforms

— Entry-level, superior and deluxe product versions

— Products developed by different subsidiaries or acquisitions
— Legacy, current and next-generation development efforts

Heterogeneous h/w and s/w raise costs
— Multiple suppliers at lower volume/price points

— Need to maintain separate teams for each platform type
« Higher training, development and maintenance hosts

(s

Migrating to Linux for Device Software 11

Consolidating Product Tiers and Technologies

High End
Open High Level OS

Open Environment
Multimedia Enhanced

. T~ —

High Performance Java % ; e

|

Middle Tier %
High-level OS /
Open Applications Environment
Simple Multimedia b
Java Enabled —————

Low End
Proprietary OS
Closed application
Basic Functionality

12

-

Unified Platform

Linux at all tiers

H/W and S/W MM
Implementations

More features
enabled at higher
product tiers

o,

i

Optimizing the Bill of Materials

PIM Suite
Middleware
File System

IP Networking
Embedded OS
MM CODECs
WAN IF

Lower Costs
Higher Value

PIM Suite

Middleware

File System
IP Networking
Kernel
Linux OS

MM CODECs
WAN IF

Proprietary
Royalty-Bearing

Either OSS
or Mixed

Royalty-Free
Open Source

Service/Content Delivery Infrastructure
A

o, _
« @ @ & 8 @
ISP/ASP

Wireless and Digital Satellite Gaming ISP Broadband Cable

)
e 1

Wireline Voice Broadcast Base ASP Access Head
LAN / WAN %ﬂ < |
Access | _ N '
WAN Access Point Satellite LAN / In-Home
(GPRS/WiFi/BlueTooth) Delivery (WiFi/BlueTooth)

A

Client \ N > . ’ |
In-Car Smart Phone Wireless Gaming Networked STB/ PVR D-HDTV

Entertainment Wireless PDA Handheld Gaming Console

Technical Benefits

Networking Performance

CPU Support

Availability of Device Drivers

Multi-Core and Multi-Processor Support
Security

Robustness

Migrating to Linux for Device Software 15

(>

Linux CPU Support

Not Just “Enterprise” CPUs
— 1A-32/x86 and Power Architecture

Full Range of Embedded Processors
— MPUs, MCUs, SoCs, FPGA

— ARM, MIPS, M68K, PowerPC, SH, SPARC,
Xtensa

Integrated, Mature 64-bit support
— Data and Instruction Sets

Migrating to Linux for Device Software 16

(>

Multi-Processor and Multi-Core Support

Next-generation CPUs deploying with
multi-core architectures

— Intel, AMD, FreeScale, and also ARM

Requirements from device software?

— Path to higher MIPS/watt on low-clock CPUs
— Abillity to leverage enterprise technology
— Run increasing software workload

Migrating to Linux for Device Software 17

(>

RTOS Instance 1

RTOS 1
RTO S Applications
VS.
Linux RTOS 2

Applications
for RTOS Instance 2
Multi-Core

Embedded Linux with Native SMP

and
Multi-CPU Device .
D eS| g ns Applications §

Linux Robustness

Starting Point — Traditional RTOS

Traditional “executive” RTOSes
— VxWorks 5.0, pSOS, VRTX, eCOS, Nucleus

Not Proprietary Embedded UNIX
— ChorusOS, LynxOS, QNX

Not enhanced RTOS
— VxWorks 6.0/AE, Integrity, OSE

Migrating to Linux for Device Software 19

(>

Building Complex Applications with a Vintage RTOS

Applications

< %

imited 08

cannot support
complex applications

Can create an
“Inverted pyramid”

Linux PunditA

Migrating to Linux for Device Software

Why Complex

RTOS-based Projects

Simple kernel cannot cope
with complex s/w stack

Little or no off-the-shelf
s/w and m/w

Single-vendor solution

No support for deployed
memory protection

Mismatch between
modern CPUs and
10-year old RTOS

Migrating to Linux for Device Software

Often Fail

Cannot support
large teams of
s/w engineers

RTOS Applications Highly Exposed to Corruption

Application

Application

Application Data

)

~~

Stacks

~~

~
Kernel Data

Kernel

Migrating to Linux for Device Software

Applications can corrupt
— User and kernel data
— Other applications

— Kernel program code
— |/O Device Ports

Stacks freely underflow
— Overwrite each other
— Corrupt other data

22

>

Fault Detection with a Vintage RTOS

Effects of corrupt code, data, I/0O Unpredictable
—Minor glitch . . . catastrophic failure ??

Fault-to-Detection time unbounded

— Microseconds, seconds, minutes, days, months . . .
years

When detected, no association with cause!

Seconds Minutes Hours Days
L 1 1 1 1 '>
\ | | | | | | | |
R ¢ A R
[l .-"“‘

" ast®
uh:,,,, ‘ee

*
*
A d
.
P
.
lllll
lllll

.
““
ws®
“““

e
sunns
T T L L L L
L]
--

Migrating to Linux for Device Software 23 A

Fault Scope with a Vintage RTOS

Failure almost always unrecoverable
— Data and code overwritten
— Stacks corrupted
— Dynamic data leaks
— Tasks not reliably restarted

Failure is entire system!
— Uses watchdogs to ensure integrity
— Only recourse -- reboot system!

(>

Migrating to Linux for Device Software 24

Fault Detection/Prevention with Linux

Linux Catches Common Programming Errors
— Writes to application or kernel code
— Many accesses off “stray” pointers
— Attempted writes to kernel data
— Stack under-runs
— lllegal accesses to I/O devices

Immediate Process Termination : SEGFAULT

Can Produce Core File

— Can be parsed with debugger to determine and
repair exact cause of error

Failed Process Can Also Be Restarted

Migrating to Linux for Device Software 25

(>

Getting Started

Hardware Bring-Up
Firmware Bring-Up
Linux on Reference Platform

Stage | Integration

Application Migration

Migrating to Linux for Device Software 26

(s

4§

Migrating to Linux for Device Software
Part Il - Choosing the Path to Linux

Bill Weinberg
Wind River Seminars — Sunnyvale, Alameda, Seattle
August 2005

Agenda - Part Il
Migrating to Linux for Device Software

Comparing Legacy and Linux
Architectures

Run-time Architecture Options
Migration Process

Key Migration Challenges
Resources

Buy vs. Build

Migrating to Linux for Device Software 29

(>

Comparing Legacy and Linux Architectures

Vintage Legacy RTOS System Architecture

Kernel & Applications run in

RTOS Kernel physical memory
— Copy from ROM to RAM at boot

RTOS Task — Execute from RAM
Little or no differentiation in user
RTOS Task and system contexts
— Tasks and kernel run in priveledged
RTOS Task context, for performance

— System calls are just “JSRS”

(>

Comparing Legacy and Linux Architectures

Linux System Software Arc

Kernel/Apps run in virtual
address space(s)

— Kernel copied from storage at
boot time

— Apps loaded as needed

— Processes are containers

— Tasks = Linux threads

— All code, const data is RO
Strongly differentiated
execution contexts

— User-space processes see
only local address space

— Only kernel context or root
can access physical
addresses

Migrating to Linux for Device Software

hitecture

Linux Kernel

Linux Thread

Linux Thread hread [hread

Linux Thread

Process

31

>

Comparing Legacy and Linux Architectures

Notions of Context

Scheduling Unit

Context

Addressing

RTOS Task

Registers, PC, SP

Physical

Linux* Thread

Registers, PC, SP

Logical (in process
address space)

Linux Process

Context of 15t Thread,
Memory Mapping

Logical

Linux Kernel Thread

Kernel address space

Logical

Migrating to Linux for Device Software

32

(s

Run-time Architectures

RTOS Run-time Architecture / Stack

Simple Architecture

— S/W components linked as
RTOS Application C
Inc. Device I/F monolithic executable

Libraries _
Key Question
RTOS Kernel — Where and how does
Hardware Platform application code execute with
Linux?

(>

Migrating to Linux for Device Software 33

Run-time Architectures

Migrated Run-time Architectures

RTOS Application

RTOS Emulation

Libraries

Linux Kernel

Device Drivers

Hardware Platform

RTOS Run-time Emulation
over Linux

Migrating to Linux for Device Software

Linux
Application RTOS.
Application
Libraries Libraries
Linux RTOS

RTOS Drivers

Virtualization Layer

Hardware Platform

Partitioned Run-time with
Virtualization

34

Native Linux
Application Processes
and Threads

Libraries

Linux Kernel

Application Drivers

Hardware Platform

Complete Native Linux Port
with Threads and/or Processes

6.

Migrated Run-time Architectures

RTOS Run-time Emulation

RTOS Application

RTOS Emulation

Libraries

Linux Kernel

Device Drivers

Hardware Platform

RTOS Run-time Emulation
over Linux

Migrating to Linux for Device Software

Two flavors of emulation
— Library-based

« Native Linux library functions emulate
individual RTOS APIs and system calls

« E.g., OSChanger, etc.
— Whole-RTOS

e RTOS code runs as sole linkable w/n a
Linux process

« Application code runs “on top” of
process-based RTOS (cp. Java)

. E.g., VXELL (VXSim)

35

(>

Migrated Run-time Architectures

Partitioned / Virtualized Run-time

Linux

Application RTOS_
Application
Libraries Libraries
Linux RTOS

RTOS Drivers

Virtualization Layer

Hardware Platform

Partitioned Run-time with
Virtualization

Migrating to Linux for Device Software

Virtualize CPU, Memory, Interrupts
iInto 2 or more partitions
Partition “0”

— Legacy RTOS for real-time and 100%
API| compatibility

Partitions “1..N”

— Instance(s) of Linux or other “application
OS” for next-generation functionality

E.g., Jaluna OSware, misc. OSS
projects

36

(>

Migrated Run-time Architectures

Native Linux Port with Processes/Threads

Migrate legacy RTOS application to Native Linux
run as native Linux code Application Processes
— Map/emulate APIs and Threads

Re-architect as needed

— RTOS tasks migrate to multiple Linux —
processes & threads Libraries

— Re-write I/O code as native Linux
device drivers

Greatest investment, greatest Application Drivers

potential benefit

— Resulting code is more portable with

greater longevity Complete Native Linux Port
with Threads and/or Processes

Linux Kernel

Hardware Platform

Mapping Legacy RTOS Tasks to
Linux Processes and Threads

RTOS Kernel

RTOS Task

Linux Thread
Linux Thread
Linux Thread

Process

RTOS Task

RTOS Task

Migrating to Linux for Device Software 38

Linux Kernel

d

x Thread

d

d

Ux Thread

d

>

Initial Porting Effort:
Single Process, Multi-Threaded

Most logical migration architecture
— Move legacy task code over to execute as Linux threads in a
single Linux process
Legacy-to-Target Application
— One-to-one mapping of tasks to threads
— Legacy and target both build in single C or C++ name space

— Continued use, as needed, of data sharing through global
variables

— Options for migrating h/w i/f code to Linux drivers or in-line use
Scales to multi-board legacy systems

— Each legacy CPU board maps tos own process
— Runs under Linux on a same or next-generation CPU

(>

Migrating to Linux for Device Software 39

Example RTOS-to-Linux APl Mapping:

VxWorks to Linux

Call Type VxWorks APl | Linux Equivalent

Task Creation taskSpawn() pthread_create() or fork()
Instance Message Queue | msgQCreate() | mg_open()

Acquire Semaphore semTake() semget() and sem_wait()
Wait taskDelay() sleep() and nanosleep()

Migrating to Linux for Device Software

40

(s

Mapping RTOS ITCs to Linux IPCs and
Inter-thread Mechanisms

RTOS Inter-Task

Linux* Inter-Process

Linux Inter-Thread

Semaphores
(Counting and Binary)

SVR4* Semaphores

Mutexes

pthread Mutexes, Condition
Variables, FUTEXes

Message Queues and
Mailboxes

Pipes/FIFOs, SVR4 queues

Shared Memory with formal
mechanisms or through named
data structures

Shared Memory with

shmop() calls or with mmap()

Threads share name data
structures in a process-wide
namespace

Events and RTOS Signals

Signals, RT Signals

Timers, Task Delay

POSIX timers/alarms,
sleep() and nanosleep()

Migrating to Linux for Device Software

41

(s

Key Migration Challenges

Real-time

Time Management
Footprint

Device Interfacing
Development Tools

Migrating to Linux for Device Software 42

(s

Linux and Real-time

Linux is not an RTOS, however . . .

Linux does satisfy 87% of developer RT needs (VDC)

— Soft real-time and preemption latencies

— Interrupt response

— Context switching

Native Linux Real-time Capabilities

— Preemptible Linux and the 2.6 kernel

— FUTEXes and Robust Mutexes

— New developments

Linux Enhancement Technologies

— Sub-kernels and third-party modules

— Running an RTOS and Linux together with virtualization
Real-time Requirements Satisfied by Linux for

Respondents Using Linux, VDC, Natick MA
Migrating to Linux for Device Software 43

(s

What is Real-time?

Real-time vs. Real-fast

— No absolute measure of real-time “speed”

— Key are notions of worst case, determinism, and jitter

— Some trade-off between responsiveness and throughput

Hard vs. Soft Real-time

— Hard real-time requires/provides guaranteed worst case

— Soft real-time represents statistical results from best effort
« System meets deadlines 99% or 99.999% of the time

An OS is not “real-time”
— OSes can enable applications to meet deadlines, or not

— Most measurements are not of performance, but of how fast an
OS can “get out of the way”

Migrating to Linux for Device Software 44 A

Real-time Terminology

Interrupt and Preemption Latency Constituents

H/W Interrupts i ISR
Delay Disabled Vector /> Dispatch Driver
>
Interrupt Latency
Interrupt Context (Re)Scheduled
Latency Kernel Scheduler Switch Task or Thread

(>

Will Linux ever perform like an RTOS?

Migrating to Linux for Device Software

—-—-'—''-.

pr— |
PENGUINS

CROSSING

46

>

Linux Real-time Responsiveness

RTOS

Harder

1 sec 100 msec 10 msec 1 msec 100 usec 10 psec 1 usec

Migrating to Linux for Device Software 47

Linux Real-time Responsiveness (continued)

RTOS

Harder

1 sec 100 msec 10 msec 1 msec 100 psec 10 psec 1 usec

Migrating to Linux for Device Software 48

Linux Real-time Responsiveness (continued)

RTOS
90%
of Harder
Embedded
Applications

1 sec 100 msec 10 msec 1 msec 100 psec 10 psec 1 usec

Migrating to Linux for Device Software 49

Time Management

Clocks and Timers

Timer resolution

— VxWorks*/RTOS APIs quantify time in terms of
system clock ticks, precise resolution

— Linux™ uses wall clock time and/or “jiffies”

Auxiliary clock
— VxWorks/RTOS offer auxiliary clocks
— e.g., sysAuxClkConnect()

— Allows connection to a second clock running at user-
defined speed/resolution

Migrating to Linux for Device Software 20 _A‘

Time Management

Clocks and Timers Solution

Timers

—Linux kernels easily manage large numbers of timers
with low overhead

— Set interval timers via setitimer() 12
— Use hardware-based timers Yo 2
— Use sub-kernel timers

’

Auxiliary Clock)W 5
— Emulated via a thread looping on nanosleep()
— Maximum resolution is ~1 ms

— Finer resolution can be achieved using POSIX
Timers

* http://sourceforge.net/projects/high-res-timers/

(s

Migrating to Linux for Device Software o1

Will Linux ever fit in embedded
footprints?

Migrating to Linux for Device Software 92

>

Footprint

A legacy RTOS is not a platform

RTOSes Scale DOWN well, because

— RTOSes are collections of services
— Each application only deploys services it needs

Each RTOS-based design is sui generis — a one-off

Application Application GERICZIE]
libraries libraries libraries
kernel drivers kernel drivers kernel drivers

(>

Footprint
Linux is a platform, par excellence

All versions of Linux present same services, APls
Each application uses services it needs
Any Linux implementation can run 1000s of applications

Application Application GERICZI
libraries networking middleware
Standard Linux Kernel drivers

Embedded Linux = Enterprise Linux = Desktop Linux

(>

R
Footprint
What you get out depends on what you put in

RTOS
16 bit 8 bit
MCU SoC

ile Systems Web TCP/IP

32MB 16MB 8MB 4MB 2MB IMB 512KB 256KB 128KB 64KB

Migrating to Linux for Device Software 55

Hardware Interface

Vintage Legacy RTOS Device Code

Device interface code tends toward informal
— Read/write/catch inline with application code

— No strong differentiation between system and “user
code”

Many legacy RTOSes have a driver model
— Often ignored by device OEMS
— Main audience is/was IHVs

Migrating to Linux for Device Software o6

(>

RTOS vs.
Linux HIW
Inter-face

Process/Thread
Process/Thread
Process/Thread
Process/Thread
Process/Thread

write data back read
to user memory syscall

Mode

Legacy RTOS Embedded Linux

© RTOS application has access to machine address space,
memory mapped devices and I/O instructions

© Linux systems use a device driver model for this functionality

Graphic from “Porting RTOS Device Drivers to Embedded Linux,” Linux Journal L INUX Pu nd lt

57 Open Source Opinion & Analysis
Business & Technical Consulting

Migrating to Linux for Device Software

Hardware Interface Solutions

Convert legacy interface into Linux driver
— Usually requires re-architecting
— Can be involved process

Port legacy interface using Linux mmap()

— “Quick and dirty” — interface runs in user space
process

— Good for single read/write or polled device access
— Not a good path for interrupt handling

Use existing Linux user space subsystems
—E.g, for USB

(>

Migrating to Linux for Device Software o8

Direct Memory-Mapped I/O with Linux

Linux Program

mem;ptr =

mmap (hw_addr) ;

c = *mem ptr;

Process Physical
Memory Memory

#include <sys/mman.h>
#define REG_SIZE 0x4 /* device register size */
#define REG OFFSET O0xFA400000 /* physical address of device */

void *mem ptr; /* de-ref for memory-mapped access */
int fd; /* file descriptor */
fd=open ("/dev/mem",O RDWR) ; /* open phys memory (must be root) */

mem ptr = mmap ((void *)0x0, REG SIZE, PROT READ+PROT WRITE,
MAP SHARED, fd, REG OFFSET);
/* actual call to mmap */

(s

Development Tools Challenges

Good News

— Linux and OSS offer developers thousands of
tools and utilities

— Many device software developers already
know these tools

» GCC, GDB, bash, TCP/IP utilities

Less-good News
— Not all are appropriate for device software
— Most are CLI; few are integrated

Migrating to Linux for Device Software 60

(>

Migration Resources

Open Source Community
— Projects around CPUs, tools, APls
— Informational web sites

Semi-conductor & SBC Manufacturers
— Maintain / Contribute to Architecture Trees

ndependent Software Vendors (ISVs)
Peripheral & Chipset Providers (IHVs)
ntegrators & Professional Services Orgs.

_inux Platform / Tools Providers
— Distributions, Embedded Linux, and DSO

(>

Migrating to Linux for Device Software 61

Embedded
Project

Migration Resources

Buy vs. Build

Decisions with

——

In-House OS

+ Max Control

-- Eng. Investment
- Maintenance
- Non-standard

COTS OS

+ Off-the-shelf

+ Vendor/Community
Support

Open Source Linux

Open Source
+ Multi-vendor

+ Greater control
+ Standards-based
- IP risk?

Proprietary
+ Familiarity / Legacy
5 Non-standard
-- Closed $%$9$
Lack of Control

Risks

- Time to Market
- Total Costs
- Long-term Support

o Y

Roll Your Own Ideal Commerecial Linux
+ Control + Hardware Support + Vendor Commitment

— Code Management + Tools + Quality Assurance
-- Point-in-Time + Real-time + Indemnification
Quality Assurance _+ Vertical Solutions

