
Executive Summary

With its desktop heritage and wide deployment in mobile
handsets and consumer electronics applications, Linux offers
automotive original equipment manufacturers (OEMs) and
integrators an impressively wide range of graphical user
interface (GUI) technologies and toolkits. The GUI of intelligent
in-vehicle systems presents OEMs and integrators with the
greatest opportunities for differentiation. Navigation
applications, entertainment, wireless telephony, Internet
connectivity, remote productivity, and other in-car applications
all require GUI capabilities with appropriate and scalable
performance, resource utilization, and capability sets.

This paper provides an overview of commercial and free
software GUIs available for automotive OEMs and integrators
and heuristics for making design and deployment decisions.

Use Cases and Applications

The primary use cases for GUI technology in Linux-based
automotive applications include the following:

•	 Vehicle dashboard and back-of-seat displays with medium
to high resolution

•	 Navigation systems with 2D and 3D map displays, audio
output, text-to-speech, and so on

•	 Entertainment systems for local media playback and
streaming from edge, 3G, satellite, and other wireless
Internet connections

•	 Single and multiplayer games
•	 Desktop-type applications for reading/sending email,

opening email attachments, calendaring/scheduling, and
being productive while in traffic

•	 Vehicle maintenance and operational feedback (e.g.,
vehicle reverse video camera)

Core Automotive UI Requirements

To support this gamut of applications, GUI technology for
automotive applications presents a short list of core
requirements:

•	 2D and (optional) 3D acceleration; OpenGL ES
(embedded systems) APIs

•	 Portable and lightweight application framework
•	 Ready-to-use UI elements and widgets
•	 Customizable full-screen application palette with

branding/skinning
•	 Screen resolutions from VGA (video graphics array)

(640x480) upward
•	 Touchscreen support
•	 Customizable, international input methods
•	 Speech output1

•	 CPU support for automotive architectures: ARM,
Renesas SH, and Intel Architecture

•	 Driver support for in-car network protocols and
peripherals such as CAN, MOST, global positioning
systems (GPS), etc.

Unlike the majority of legacy embedded OSes, Linux also
supports a range of desktop applications. This broader set of
use cases lets Linux offer embedded developers a surfeit of
options for user interface design. Extensive embedded
deployment, moreover, has helped to optimize and rearchitect
UI resources to fit the resources and performance needs of
automotive applications.

Table of Contents

Executive Summary... 1

Use Cases and Applications.. 1

Core Automotive UI Requirements..................................... 1

GNOME... 2

	 GTK+... 2

	 GNOME Application Services... 3

Qt Platform for Embedded Linux and Qt Extended........... 3

Enlightenment... 4

	 e17	... 4

FST FancyPants... 4

Java		 ... 4

	 Abstract Window Toolkit... 4

	 Swing... 5

	 SVG Tiny and JSR 226... 5

	 LCDUI.. 5

	 LWUIT.. 5

Browser-Based UI.. 5

Supporting Legacy In-Car Applications............................... 5

Conclusion... 6

Graphical User Interface Resources in
Linux for Automotive

2 | Graphical User Interface Resources in Linux for Automotive

GNOME

GNOME is the most popular of the Linux desktop environments;
it is the default desktop for Novell/openSUSE, Red Hat/Fedora,
Ubuntu, and other distributions, and also powers many UNIX
workstations. Today, GNOME also enjoys the largest and most
active developer community for deployment in mobile,
automotive, and other embedded use cases. Learn about the
main GNOME project at http://www.gnome.org.

GNOME offers automotive OEMs and integrators a rich
toolkit with the following component subsystems.

GTK+

GIMP (GNU Image Manipulation Program), or GTK (GIMP
Toolkit), is a toolkit and API set for creating applications with
graphical user interfaces. GTK is best known and most widely
deployed in its role as the foundation for the GNOME
desktop on Linux-based workstation computers. GTK is also
the underlying framework for a range of Linux-based mobile
devices, in particular mobile phones and mobile Internet
devices (MIDs) running LiMo middleware and the Moblin
platform. Learn more at http://www.gtk.org/.

GTK is written in C with bindings to C++, Python, and C#. GTK
is licensed under both LGPLv2.1 and MPL 1.1 and can be freely
deployed in commercial applications without reciprocal
disclosure requirements. Its broad desktop use has enabled
development and customization for a wide range of use cases.

GTK itself has few dependencies beyond the standard GNU
libraries. It can render using both X11 and frame buffer
interfaces and uses D-Bus for communication among
GTK-based application and also to/from other D-Bus
publishers/subscribers.

GTK offers developers a rich set of APIs for graphical
presentation, with a number of notable subsystems including
Cairo and Pango, described in the following sections, and the
Accessibility Toolkit (ATK).

Cairo 2D Graphics

Cairo is a 2D graphics library designed to produce consistent
results across output media. Currently supported output
targets include the X Window System, Quartz, Win32, image
buffers, PostScript, PDF, and SVG file output. Back ends
currently under development include OpenGL (through glitz)
and DirectFB. Learn more at http://www.cairographics.org/.

Cairo APIs provide drawing operators that include stroking
and filling cubic Bézier splines,2 transforming and compositing
translucent images, and antialiased3 text rendering. All
drawing operations can be transformed into any affine
transformation4 (scale, rotation, shear, etc.).

With the release of GNOME version 2.1, Cairo APIs were
enhanced to include integer-only interfaces to avoid the
overhead of earlier desktop-centric floating point architecture.

Pango Text Rendering

Pango is a library for laying out and rendering text, with
an emphasis on internationalization. While able to run
freestanding, Pango primarily runs in the context of the GTK+
widget toolkit and forms the core of text and font handling
for GTK+ 2.x.

Pango is modular and the core Pango engine can be used
with different font back ends: client-side fonts using FreeType
and fontconfig libraries; native fonts on Microsoft Windows;
and native Mac OS X fonts.

GTK+

X11/FB GLib D-Bus

Underlying Infrastructure

Pango Text
Rendering

Cairo 2D
Graphics Lib

Other
Components

UI Toolkit

C C++ Python

Application Services

Matchbox GStreamer Other APIs

Figure 1: GNOME user interface components

3 | Graphical User Interface Resources in Linux for Automotive

Linux/X11 Mac OS Windows/WinCE

Host Infrastructure

C++ Java

Qt Class Library

Qt
Core

GUI

Symbian OS

Database XML

Scripting Font Engine

Network OpenGL

Graphics
View

2D Canvas

Pango supports virtually all major scripts and ships with
a wide selection of modules, including Hebrew, Arabic,
Hangul, Thai, and a number of Indic scripts. Learn more
at http://www.pango.org/.

GNOME Application Services

To support the global ecosystem of cross-platform GNOME
applications on Linux, UNIX, Mac OS, and Windows, the
GNOME developer community has evolved it to include
application-enabling modules and middleware, most notably
the following:

•	 Matchbox window manager: Small, resource-efficient
windowing library for mobile devices; learn more at
http://matchbox-project.org/

•	 GStreamer: GNOME multimedia framework;5 learn more
at http://gstreamer.org/

•	 GConf: GNOME configuration management; learn more
at http://www.gnome.org/projects/gconf/

•	 GnomeVFS: Virtual file system for consistent local and
remote storage access by GNOME applications; learn
more at http://library.gnome.org/devel/gnome-vfs-2.0/

In addition, the GNOME developer community has provided
integration with other applications and middleware, such as
the following:

•	 BlueZ: Bluetooth stack/tools; learn more at
http://www.bluez.org/

•	 Evolution Data Server: Calendar/contact manager; learn
more at http://www.go-evolution.org/EDS_Architecture

•	 Telepathy: IM/presence; learn more at http://
	 telepathy.freedesktop.org/wiki/
•	 Avahi: Service discovery; learn more at http://avahi.org/

Qt Platform for Embedded Linux and Qt Extended

Qt from Qt Software, a division of Nokia, is a C++ GUI toolkit
that provides functionality for building graphical user
interfaces. Qt supports multiple platforms, spanning desktop
systems running Windows, Mac OS, legacy UNIX, and Linux to
embedded systems running OSes from Microsoft, Symbian,
and, of course, embedded Linux. On the desktop, Qt forms
the basis for the popular K Desktop Environment (KDE) project
and is a standard installation option on Novell/SUSE, Red Hat/
Fedora, and the main desktop for the Kubuntu distribution.

Qt is an application platform for devices based on embedded
Linux, targeting PDAs, mobile phones, web pads, and
automotive applications.

Q includes two broad versions:

•	 Qt for Embedded Linux: This enables creation of fixed-
function Linux-based devices and is optimized for memory
efficiency.

•	 Qt Extended: This is an advanced application platform
and user interface for embedded devices such as Linux-
based mobile phones. It includes preintegrated
applications, allowing OEMs and designers to build
feature-rich phones.

Qt for Embedded Linux is offered under both open source
(GPL versions 2 and 3) and commercial licenses, and Qt
Extended is offered in a commercial license. The commercial
branches of the Qt for Embedded Linux/Qt Extended
projects include a range of development tools for UI design
and layout, internationalization, and cross-platform build.

Figure 2: Qt user interface components

4 | Graphical User Interface Resources in Linux for Automotive

Enlightenment

Enlightenment is an open source window manager for the X
Window System, which can be used alone or in conjunction
with a desktop environment such as GNOME or KDE.
Enlightenment is also used as a substitute for a full desktop
environment.

Enlightenment enjoys deployment in “consumer desktop”
Ubuntu-based (Debian) Linux distributions such as gOS and
OpenGEU. It also forms one configuration of the OpenMoko
mobile phone stack.

The Enlightenment project itself comprises three main
components:

•	 Enlightenment DR16: The original window manager
project

•	 Enlightenment DR17: A complete rewrite of DR16
intended to function as a complete desktop shell; also
known as e17

•	 Enlightenment Foundation Libraries: Graphical software
libraries from the Enlightenment window manager project

e17

The e17 environment offers embedded application developers
and device OEMs a range of features and capabilities:

•	 Animated, interactive desktop backgrounds, menu items,
iBar items, and desktop widgets

•	 Window shading, iconification, maximizing, and sticky
settings

•	 Full theming and skinning
•	 Integrated file manager
•	 Desktop icon support
•	 Virtual desktop grid
•	 Modular design (available modules include pager virtual

desktop switching; iBar launcher; iTask application dock;
drop shadow for windows; analog clock; battery; CPUFreq;
and temperature monitors)

•	 Support for NetWM, ICCCM, XDG, and other standards
•	 Internationalization

Enlightenment is licensed under Berkeley Software
Distribution (BSD) and so imposes a copyright disclosure
requirement on OEMs integrating Enlightenment code into
commercial devices.

FST FancyPants

GTK, Qt, and Enlightenment all exist as open source projects
with various commercial integrations of each for different
markets. There also exist purely proprietary options for
building mobile and automotive applications on embedded
Linux, such as FancyPants.

FancyPants is a graphics and multimedia platform for
developing and deploying embedded Linux applications in
consumer, commercial, and industrial devices, including
automotive applications. Theming and scripting (with XML
and Lua) lets designers create dynamic layouts while an
optimized run-time delivers performance with or without
hardware acceleration. Through efficiency and minimal
resource requirements, FancyPants brings multimedia
graphics capabilities to embedded devices, without
inducing new hardware requirements. Learn more at
http://fluffyspider.com/.

Java

Java made early strides in automotive applications, especially
through the efforts of IBM Global Services. As with Java in
other mobile devices, automotive OEMs and integrators have
struggled with both performance and interoperability issues
in building and deploying Java-based automotive systems
over the long term. In particular, OEMs and independent
software vendors (ISVs) have faced fragmentation in Java
profiles/JREs (CDC, J2ME, J2SE, etc.) and APIs as well as
“too many choices” for Java UI frameworks.

Today there exists a range of increasingly standardized UI
options for Java in embedded systems, with Sun and others
making introductions in the past year. The major paths
include the following:

Abstract Window Toolkit

The Abstract Window Toolkit (AWT) is the original Java
platform-independent windowing, graphics, and UI widget
toolkit, dating back to JDK 1.0/1.1. AWT is now part of Java
Foundation Classes (JFC), the standard API for providing a
GUI for a Java program. It is widely used and deployed in
embedded applications and represents the “least common
denominator” for Java graphics and UI resources. AWT is also
the GUI toolkit for several mobile Java profiles. For example,
Connected Device Configuration (CDC) profiles require Java
run-times on mobile telephones to support AWT.

AWT widgets provide a thin abstraction over an underlying
native UI. Creating an AWT object (e.g., a check box) causes
AWT to call the underlying native routine to create that object.
Many application developers prefer this model because it
provides fidelity to the underlying native windowing system
and better integration with native applications. Learn more at
http://java.sun.com/products/jdk/awt/.

5 | Graphical User Interface Resources in Linux for Automotive

Swing

Swing is a widget toolkit for Java and is part of the JFC.
Swing provides a more sophisticated set of GUI components
than AWT. In particular, Swing provides a native look and feel
that emulates several platforms and also supports a
pluggable look and feel that allows applications to have a
unique look and feel independent of the host platform.

Swing has been included as part of the Java Standard Edition
since version 1.2, but notably not with J2ME. For this reason,
and because of additional compute and resource requirements,
Swing has not taken hold in mobile and embedded applications.
With the advent of more powerful, multicore embedded CPUs
and enhanced desktop interoperability (as with Intel Atom),
Swing can be a more attractive UI toolkit for automotive. Learn
more at http://java.sun.com/j2se/1.5.0/docs/guide/swing/.

SVG Tiny and JSR 226

Scalable Vector Graphics (SVG) is a W3C specification with an
XML-based grammar that defines instructions for rendering
rich, interactive graphics and multimedia applications and
content. In response to input from the mobile ecosystem,
the W3C SVG working group defined two profiles to target
resource-constrained devices: SVG Basic and SVG Tiny.

JSR 226 can be thought of as Java wrappers/APIs for SVG
Tiny and has become the standard for interactive/animated
2D graphics on the J2ME platform. Developed within the
Java Community Process (JCP), JSR 226 acknowledged the
mobile industry standardization of SVG Tiny and built its APIs
on top of them. JSR 226 offers simple methods to load and
display SVG Tiny files on the go, as well as manipulate SVG
Tiny content or create it from scratch on a mobile device.

JSR 226 offers developers the option of prototyping with full
SVG using Swing on the desktop and subsequent refactoring
onto SVG Tiny for resource-constrained mobile/automotive
devices.

LCDUI

LCDUI (Liquid Crystal Display UI) is the Java ME (MIDP) UI
class library. LCDUI API provides a small set of display
primitives common to mobile device user interfaces:
List, Alert, TextBox, Form, and Canvas. Learn more at
http://java.sun.com/javame/reference/apis/jsr037/.

LWUIT

LWUIT (Lightweight User Interface Toolkit) is a UI library
designed for deployment together with applications. LWUIT
helps content developers to create compelling and consistent
Java ME applications. LWUIT supports visual components and
other UI elements including theming, transitions, and animation.
Learn more at https://lwuit.dev.java.net/.

Browser-Based UI

The previous sections on native and Java UI schemes focus
primarily on the display of application output and content
local to a device. An alternative paradigm is to abstract the
difference between local applications and content and
remote equivalents by using a web browser as the primary UI
display mechanism. Browser-based UI design builds on
HTML/XML documents and programming in JavaScript, PHP,
and CGI (server-side Common Gateway Interface) scripting
instead of relying on toolkit APIs for rendering and display.
Documents and content that constitute the device UI are
then served by a local embedded web server (e.g., thttpd, an
open source software web server by ACME Laboratories;
Boa; or even Apache) or by remote servers over WAN and
other connective paths. A further advantage of a browser-
based UI paradigm is the ability to leverage AJAX code and
tools for embedded UI applications.

A browser-based UI typically eschews the “window frame”
around the browser. Many browsers encountered on the
desktop have embedded versions that offer full-screen
functionality for UI applications. Some rely upon host UI
toolkits (e.g., GTK+) while others (optionally) include their own
graphics primitives, calling X or frame buffer routines directly.

Linux hosts perhaps the broadest array of browsers of any OS
in embedded or enterprise IT. Available browsers include
Mozilla/Firefox (and the Gecko rendering engine), Konqueror,
Opera, and multiple WebKit derivatives.

Supporting Legacy In-Car Applications

The automotive marketplace features long-lived hardware
and software platforms. OEMs and integrators demand that
legacy applications be able to migrate from prior-generation
implementations to new Linux-based automotive systems
(and even beyond). These legacy systems were built on a
range of OSes, middleware, and languages; fortunately, Linux
and other free and open source software (FOSS) projects
provide multiple rehosting paths for such legacy code.
Examples include the following:

•	 “Classic RTOS” (Wind River’s VxWorks, pSOS, etc.): Multiple
projects and toolkits offer options for rehosting on Linux,
using RTOS emulation and/or embedded virtualization.
Information on the topic is available from Wind River.6

•	 Embedded UNIX (QNX, LynxOS, etc.): These legacy OSes
share more than 90% of their APIs and architectures with
Linux, easing porting and reuse of legacy automotive code.

•	 Java: All profiles of Java host and run on embedded Linux,
making the transition nearly transparent.

•	 Legacy GUI: In-house and commercial off-the-shelf (COTS)
proprietary UI stacks can usually be rehosted in Linux-
based virtual machines running over available embedded
hypervisors. The only onerous requirement is to
encapsulate ad hoc use of frame buffers and video
memory into a driver abstraction for safe virtual machine
integration and/or driver paravirtualization.

Conclusion

The goal of this paper is to elucidate the wealth of options
for building and rehosting new and legacy user interface
code and content for automotive application on embedded
Linux, helping to design and speed automotive applications
to market.

Linux-based development for automotive applications enjoys
an extremely rich toolbox of mature solutions, platforms, and
point technologies, thanks to the following:

•	 Five-plus years of burgeoning deployment of Linux in
mobile and GUI-intensive consumer electronics
applications

•	 More than 15 years of Linux desktop development and
deployment in enterprise, technical workstation, and
consumer desktop systems

•	 Almost three decades of graphical workstation investment
in and around X11 (X Window System)

Notes

1.	Multimedia Resources in Linux for Automotive,
Wind River, http://windriver.com/whitepapers/.

2.	Curves interpolate between two endpoints, with
additional parameters governing the shape determined
by two ``control points.’’

3.	The technique of minimizing the distortion artifacts
known as aliasing when representing a high-resolution
signal at a lower resolution in digital signal processing.

4.	Any set of translation, rotation, and scaling operations
in the two spatial directions of the plane.

5.	See note 1 above.
6.	Dan Noal and Tim Fahey, Effective Linux Migration

Processes, Wind River, http://windriver.com/whitepapers/.

Wind River is the global leader in Device Software Optimization (DSO). We enable companies to develop,
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

© 2008 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc.
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Rev. 10/2008

