
Executive Summary

While there is no consensus
on the definition of Linux
for automotive, this white
paper will examine and
summarize the state of
available options for its
key technologies. Available
off-the-shelf components
and solutions from both
community-based open
source software (OSS) and
commercial software products are evaluated against the
actual real-world requirements of device original equipment
manufacturers (OEMs). This paper also focuses on the need
for integration to create a viable Linux for automotive plat-
form and highlights the challenges arising from factors such
as code size, project and technology maturity, software
licensing, and other IP considerations and presents cost-
effective options for OEMs to realize their design goals for
automotive Linux systems.

This white paper lays the foundation for defining a Linux for
automotive platform, to meet requirements emerging from
industry trends and from specific technical needs of the
companies involved in building real-world systems.

Introduction

In the past five years the Linux operating system and related
open source software have made impressive inroads in
embedded systems deployment and have supported both
evolutionary and revolutionary changes in intelligent device
design practices. Today one-quarter to one-third of 32-bit

and 64-bit designs are developed and deployed on Linux-
based platforms. That share continues to expand, driven by
trends that include the following:

•	 Convergence	of	diverse	functions	into	increasingly	
complex devices

•	 Software	content	(lines	of	code)	and	application	
complexity that grow dramatically year over year

•	 Requirements	for	embedded	application	capabilities	
and connectivity that meet and exceed those for
desktop usage

•	 Original	equipment	manufacturers’	need	for	supporting	
multiple	CPU	architectures	or	hardware	platforms

•	 Development	and	implementation	of	end-to-end	applica-
tions with common APIs and protocols at every node of
infrastructure and in diverse types of client devices

•	 Inability	of	single-vendor	proprietary	software	platforms	to	
match the pace of innovation driven by convergence of
traditional IT, consumer electronics, the Web, and such
specific application areas as automotive

Different	market	segments	and	applications	areas	have	
adopted Linux and OSS at different rates. Early adopters in
networking and communications infrastructure leveraged
Linux	interoperability	with	legacy	UNIX	systems	and	strong	
support for standards-compliant networking. Subsequent
generations of developers adopted Linux in consumer
electronics, mobile telephony, and elsewhere as a platform
for innovation; in particular, global OEMs look to Linux for its
flexibility, brand-neutrality, reliability, and community-driven
rapid pace of evolution.

Today functionality of in-vehicle systems increasingly
converges with other intelligent device types and capabilities
from the broader fields of consumer electronics, mobile
telephony, and even enterprise IT. This convergence in
particular creates a need for a platform that can specifically
address the following:

•	 Emerging	requirements	to	meet	both	automotive	and	
consumer electronics industry standards

•	 Soaring	budgets	for	test	and	QA,	which	will	continue	to	
rise as vehicle designs accrue features and functions

•	 Mismatches	in	development	and	product	life	cycles	for	
consumer and automotive segments

•	 Aftermarket	and	channels	exerting	pressure	on	OEMs	to	
contribute value to integrated solutions

•	 Acceleration	of	innovation	and	optimized	profit	margins	
for OEMs despite long automotive product life cycles

Table of Contents

Executive Summary .. 1

Introduction .. 1

Linux for Automotive Defined .. 2

OSS, Commercial Software, and Services 3

Linux for In-Vehicle Systems: A Strategic Platform

Linux

C
on

su
m

er
 Netw

orking

Automotive

AGL

2 | Linux for In-Vehicle Systems: A Strategic Platform

Linux for Automotive Defined

The requirements of automotive systems OEMs represent a
convergence of needs from several distinct segments:

•	 User-experience	and	media	support	from	consumer	
electronics

•	 Connectivity	from	data	networking,	mobile	telephony,	and	
traditional automotive systems design

•	 Performance	and	reliability	from	industrial	control,	
infrastructure, and elsewhere

Platform Attributes

To solve these needs, an open source platform must have
distinct functional attributes:

•	 Overall	software	hardening	for	improved	reliability	and	
performance

•	 Seamless	integration	of	multimedia,	vehicle/traffic	
information, and telephony

•	 Support	for	connectivity	within	a	vehicle,	among	vehicles	
(V2V) and with external data sources and roadside
infrastructure	(V2R)

•	 Small	footprint	and	fast	boot	time
•	 Real-time	responsiveness
•	 Energy,	power,	and	thermal	management	for	CPUs,	

peripherals, and displays

Platform Architecture

Linux for automotive has implications for every layer of the
software stack, from hardware all the way up through
value-added applications:

Hardware:	Linux	for	automotive	must	support	both	the	CPU	
families	of	choice	for	in-vehicle	systems	(ARM,	x86,	etc.)	as

well	as	specific	chipsets/SoCs	and	associated	peripherals	
supplied by semiconductor manufacturers in reference
hardware designs.

Operating system: Linux for automotive must include an
up-to-date Linux kernel with device drivers for specific
automotive	interfaces	(e.g.,	CAN,	MOST)	as	well	as	popular	
CODECs,	MACs,	and	protocol	stacks	from	consumer	
electronics and networking domains. An automotive Linux
operating system must also support advanced infrastructure
for such features as power state management.

Middleware: To enable current and next-generation-rich
applications and user experiences, Linux for automotive must
include middleware that spans the gamut for both consumer
electronics and mobile telephony while also integrating
vehicle control and diagnostics, global positioning, and
mapping.

Human-machine interface: The in-vehicle environment
presents a range of user-experience requirements and unique
modes of use. Linux for automotive must support appropriate
input methods (speech, touch, etc.) and user interface
capabilities to support both driver and passenger interaction
in safety-critical situations with cabin noise, motion, and other
challenges without being a distraction itself.

Applications:	Ultimately,	value-added	applications	will	
differentiate in-vehicle systems for both OEM and after-
market deployment. A Linux for automotive platform must
offer automotive systems OEMs the ability to add new
applications, carry forward legacy code, and customize and
brand off-the-shelf and included application code.

Applications Entertainment Mobile Office Networking
Platform

Management and
Diagnostics

Navigation Vehicle

HMI HMI Core Input Methods Buttons/Widgets Speech User Interface

Middleware

Audio
Manager

Audio/
Video

Consumer
Electronics

Communica-
tions Manager

Configuration
Registry Diagnostics Graphics

Indexing PIA PIM
Package

Management
Persistence
Mechanism

GPS
Power State

Management
Speech

Processing
System
Health

Traffic
Information

Vehicle
Information Web

Operating
System Linux Kernel Power

Management
TCP/IP Real-Time Device Drivers

Hardware CPU Memory Storage CAN MOST ... Bootloader

Figure 1: Key Technologies in Linux for Automotive Platform

Key Technology Support

Linux for automotive delivers key technologies required for
today’s,	and	tomorrow’s,	in-vehicle	platforms:

•	 Power	state	management	
•	 Fast	boot/init	(instant	on,	standby)
•	 Media	support	for	key	audio,	video,	and	image	formats	

and	CODECs
•	 Graphical	output	and	user	interface	construction	and	

deployment tools
•	 Consumer	electronics	connectivity	(USB,	wireless)
•	 Automotive	connectivity	(MOST,	CAN)	
•	 File	systems	supporting	flash	memory,	RAM,	rotating	

media, and networked storage
•	 System	infrastructure

OSS, Commercial Software, and Services

GNU/Linux	and	related	open	source	technology	represent	
the foundation of a Linux for automotive platform but require
the addition of a sensible mix of complementary commercial
software and services to meet the need of OEMs for
advanced automotive support.

Community-developed	OSS	can	provide	a	rich	and	varied	
toolkit for developers targeting automotive applications. In
some cases, OSS “as is” offers sufficient functionality to meet
automotive requirements; in other cases, OEMs are better
served by commercially integrated and supported code.

Rapidly	evolving	community-based	software	technology	
often needs additional capabilities to meet exacting
automotive requirements. These capabilities can include
CPU	support,	device	drivers,	standards	compliance,	protocol	
support, APIs, quality assurance, and so on. OEMs can
acquire these incremental capabilities through internal
investment in engineering resources or by partnering with
third parties to “bridge the gaps” with commercial software
and professional engineering services.

Wind	River	is	the	global	leader	in	Device	Software	Optimization	(DSO).	We	enable	companies	to	develop,	
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

©	2008	Wind	River	Systems,	Inc.	The	Wind	River	logo	is	a	trademark	of	Wind	River	Systems,	Inc.,	and	Wind	River	and	VxWorks	are	registered	trademarks	of	Wind	River	Systems,	Inc.	
Other	marks	used	herein	are	the	property	of	their	respective	owners.	For	more	information,	see	www.windriver.com/company/terms/trademark.html.	Rev.	04/2008

Commercial
Software

Components

Engineering
Services

Linux and
Open Source

Software

Automotive
Systems OEM
Applications

Third-Party
Applications

Figure 2: Commercial Approach to Open Source Automotive Solutions

