
Executive Summary

While there is no consensus
on the definition of Linux
for automotive, this white
paper will examine and
summarize the state of
available options for its
key technologies. Available
off-the-shelf components
and solutions from both
community-based open
source software (OSS) and
commercial software products are evaluated against the
actual real-world requirements of device original equipment
manufacturers (OEMs). This paper also focuses on the need
for integration to create a viable Linux for automotive plat-
form and highlights the challenges arising from factors such
as code size, project and technology maturity, software
licensing, and other IP considerations and presents cost-
effective options for OEMs to realize their design goals for
automotive Linux systems.

This white paper lays the foundation for defining a Linux for
automotive platform, to meet requirements emerging from
industry trends and from specific technical needs of the
companies involved in building real-world systems.

Introduction

In the past five years the Linux operating system and related
open source software have made impressive inroads in
embedded systems deployment and have supported both
evolutionary and revolutionary changes in intelligent device
design practices. Today one-quarter to one-third of 32-bit

and 64-bit designs are developed and deployed on Linux-
based platforms. That share continues to expand, driven by
trends that include the following:

•	 Convergence of diverse functions into increasingly
complex devices

•	 Software content (lines of code) and application
complexity that grow dramatically year over year

•	 Requirements for embedded application capabilities
and connectivity that meet and exceed those for
desktop usage

•	 Original equipment manufacturers’ need for supporting
multiple CPU architectures or hardware platforms

•	 Development and implementation of end-to-end applica-
tions with common APIs and protocols at every node of
infrastructure and in diverse types of client devices

•	 Inability of single-vendor proprietary software platforms to
match the pace of innovation driven by convergence of
traditional IT, consumer electronics, the Web, and such
specific application areas as automotive

Different market segments and applications areas have
adopted Linux and OSS at different rates. Early adopters in
networking and communications infrastructure leveraged
Linux interoperability with legacy UNIX systems and strong
support for standards-compliant networking. Subsequent
generations of developers adopted Linux in consumer
electronics, mobile telephony, and elsewhere as a platform
for innovation; in particular, global OEMs look to Linux for its
flexibility, brand-neutrality, reliability, and community-driven
rapid pace of evolution.

Today functionality of in-vehicle systems increasingly
converges with other intelligent device types and capabilities
from the broader fields of consumer electronics, mobile
telephony, and even enterprise IT. This convergence in
particular creates a need for a platform that can specifically
address the following:

•	 Emerging requirements to meet both automotive and
consumer electronics industry standards

•	 Soaring budgets for test and QA, which will continue to
rise as vehicle designs accrue features and functions

•	 Mismatches in development and product life cycles for
consumer and automotive segments

•	 Aftermarket and channels exerting pressure on OEMs to
contribute value to integrated solutions

•	 Acceleration of innovation and optimized profit margins
for OEMs despite long automotive product life cycles

Table of Contents

Executive Summary... 1

Introduction... 1

Linux for Automotive Defined... 2

OSS, Commercial Software, and Services........................... 3

Linux for In-Vehicle Systems: A Strategic Platform

Linux

C
on

su
m

er
 Netw

orking

Automotive

AGL

2 | Linux for In-Vehicle Systems: A Strategic Platform

Linux for Automotive Defined

The requirements of automotive systems OEMs represent a
convergence of needs from several distinct segments:

•	 User-experience and media support from consumer
electronics

•	 Connectivity from data networking, mobile telephony, and
traditional automotive systems design

•	 Performance and reliability from industrial control,
infrastructure, and elsewhere

Platform Attributes

To solve these needs, an open source platform must have
distinct functional attributes:

•	 Overall software hardening for improved reliability and
performance

•	 Seamless integration of multimedia, vehicle/traffic
information, and telephony

•	 Support for connectivity within a vehicle, among vehicles
(V2V) and with external data sources and roadside
infrastructure (V2R)

•	 Small footprint and fast boot time
•	 Real-time responsiveness
•	 Energy, power, and thermal management for CPUs,

peripherals, and displays

Platform Architecture

Linux for automotive has implications for every layer of the
software stack, from hardware all the way up through
value-added applications:

Hardware: Linux for automotive must support both the CPU
families of choice for in-vehicle systems (ARM, x86, etc.) as

well as specific chipsets/SoCs and associated peripherals
supplied by semiconductor manufacturers in reference
hardware designs.

Operating system: Linux for automotive must include an
up-to-date Linux kernel with device drivers for specific
automotive interfaces (e.g., CAN, MOST) as well as popular
CODECs, MACs, and protocol stacks from consumer
electronics and networking domains. An automotive Linux
operating system must also support advanced infrastructure
for such features as power state management.

Middleware: To enable current and next-generation-rich
applications and user experiences, Linux for automotive must
include middleware that spans the gamut for both consumer
electronics and mobile telephony while also integrating
vehicle control and diagnostics, global positioning, and
mapping.

Human-machine interface: The in-vehicle environment
presents a range of user-experience requirements and unique
modes of use. Linux for automotive must support appropriate
input methods (speech, touch, etc.) and user interface
capabilities to support both driver and passenger interaction
in safety-critical situations with cabin noise, motion, and other
challenges without being a distraction itself.

Applications: Ultimately, value-added applications will
differentiate in-vehicle systems for both OEM and after-
market deployment. A Linux for automotive platform must
offer automotive systems OEMs the ability to add new
applications, carry forward legacy code, and customize and
brand off-the-shelf and included application code.

Applications Entertainment Mobile Office Networking
Platform

Management and
Diagnostics

Navigation Vehicle

HMI HMI Core Input Methods Buttons/Widgets Speech User Interface

Middleware

Audio
Manager

Audio/
Video

Consumer
Electronics

Communica-
tions Manager

Configuration
Registry Diagnostics Graphics

Indexing PIA PIM
Package

Management
Persistence
Mechanism

GPS
Power State

Management
Speech

Processing
System
Health

Traffic
Information

Vehicle
Information Web

Operating
System Linux Kernel Power

Management
TCP/IP Real-Time Device Drivers

Hardware CPU Memory Storage CAN MOST ... Bootloader

Figure 1: Key Technologies in Linux for Automotive Platform

Key Technology Support

Linux for automotive delivers key technologies required for
today’s, and tomorrow’s, in-vehicle platforms:

•	 Power state management
•	 Fast boot/init (instant on, standby)
•	 Media support for key audio, video, and image formats

and CODECs
•	 Graphical output and user interface construction and

deployment tools
•	 Consumer electronics connectivity (USB, wireless)
•	 Automotive connectivity (MOST, CAN)
•	 File systems supporting flash memory, RAM, rotating

media, and networked storage
•	 System infrastructure

OSS, Commercial Software, and Services

GNU/Linux and related open source technology represent
the foundation of a Linux for automotive platform but require
the addition of a sensible mix of complementary commercial
software and services to meet the need of OEMs for
advanced automotive support.

Community-developed OSS can provide a rich and varied
toolkit for developers targeting automotive applications. In
some cases, OSS “as is” offers sufficient functionality to meet
automotive requirements; in other cases, OEMs are better
served by commercially integrated and supported code.

Rapidly evolving community-based software technology
often needs additional capabilities to meet exacting
automotive requirements. These capabilities can include
CPU support, device drivers, standards compliance, protocol
support, APIs, quality assurance, and so on. OEMs can
acquire these incremental capabilities through internal
investment in engineering resources or by partnering with
third parties to “bridge the gaps” with commercial software
and professional engineering services.

Wind River is the global leader in Device Software Optimization (DSO). We enable companies to develop,
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

© 2008 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc.
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Rev. 04/2008

Commercial
Software

Components

Engineering
Services

Linux and
Open Source

Software

Automotive
Systems OEM
Applications

Third-Party
Applications

Figure 2: Commercial Approach to Open Source Automotive Solutions

